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GENERALIZED DEFLATED BLOCK-ELIMINATION* 

TONY F. CHANt AND DIANA C. RESASCOt 

Dedicated to Herbert B. Keller on the occasion of his 60th birthday 

Abstract. A stable algorithm is presented to solve a nonsingular bordered system of the form 

(CT D) (Y(g) 
where B and C are n by m matrices and the n by n matrix A could be nearly singular with at most ,u small 
singular values. The algorithm needs only a solver for A and the solution to an m + , by m + , dense linear 
system. It is, thus, well suited for problems for which A has easily exploitable structures and m +,<< n, 
such as in continuation methods, bifurcation problems and constrained optimization. 
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1. Introduction. We are interested in solving a system of the form: 

(1.1) M(~~~~~X) A B) (X) (f) 

where the n by n matrix A may be singular or nearly singular with at most ,u small 
singular values, but the n by m matrices B and C and the m by m matrix D are such 
that M is nonsingular and well conditioned. We shall show later that this implies that 
m must not be less than ,u. Systems such as (1.1) arise, for example, in continuation 
methods, bifurcation problems [3] and constrained optimization [2], [7], where usually 
m +,u << n. The case m = 1, ,u = 1 is rather common, especially in continuation methods. 
However, in applications like computation of singular points by augmented systems 
[3], [8], [9], m is often larger than 1 and in constrained optimization, the nullity of 
A can also be larger than 1. 

In many applications, A possesses certain properties, such as sparseness or the 
existence of a special solver, which can be exploited. In these situations, we want an 
algorithm to solve (1.1) that involves primarily using solvers for A. The following 
block-elimination algorithm has this property: 

ALGORITHM BE. 
Step 1. Find the n by m matrix W and the n-vector w that solve the n by n systems: 

(1.2) AW=B and Aw=f 

Step 2. Compute the Schur complement of A in M: 

S=D-CTW 

and solve the m by m system 

(1.3) Sy = g-CTw. 

Step 3. Compute 

(1.4) x = w - Wy. 

* Received by the editors January 31, 1985, and in final form September 9, 1985. This research was 
supported in part by the Department of Energy under contract DE-AC02-81ER10996, by the Army Research 
Office under contract DAAG-83-0177, and by a BID-CONICET fellowship from Argentina. 

t Department of Computer Science, Yale University, New Haven, Connecticut 06520. Research Report 
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This algorithm is well defined if both A and M are nonsingular, since in that 
case, it is easy to show that S is nonsingular (see ? 2). It, however, can be numerically 
unstable when A is nearly singular and it can produce completely inaccurate solutions 
(x, y) in those situations [3], [6]. 

For the case m = 1 and ,u '-1, Algorithm BE can be rendered stable by employing 
implicit deflation techniques [6] to give the Deflated Block-Elimination (DBE) 
Algorithm which exploits structures in A while giving accurate solutions. In this paper, 
we consider generalizations of Algorithm DBE to the case m > 1 and ,u > 1. In ? 3 we 
review the basic deflation techniques developed in [4], [11] and extend them to the 
case of higher dimensional null space. These techniques are used to compute accurate 
representations for the solutions W and w in (1.2). In ? 4 we review Algorithm DBE 
for the case m = 1, ,u = 1, which is then used in ? 5 to motivate the generalization to 
m and ,u greater than one. 

We mention a class of related methods that are also based on Algorithm BE [10], 
[8], [9]. Instead of employing implicit deflation techniques, they rely on computing 
an LU-factorization of A with a small nth pivot, which can be computed, for example, 
by the algorithm described in [5]. However even when A is nearly singular, the usual 
pivoting strategies (e.g. partial and complete pivoting) are not guaranteed to produce 
any small pivot and the row and column permutations needed to produce such a 
factorization may not preserve the sparsity of the LU-factors. Moreover, the deflation 
techniques used here can be extended to iterative methods, such as multigrid [1]. For 
a survey of other methods for solving (1.1) see [3]. 

We also mention that Algorithm BE can still be applied by combining it with a 
few steps of iterative improvement, if A is sufficiently well conditioned with respect 
to the machine precision. The method has the disadvantage that it requires double 
precision to compute the residual. 

We shall use only the 2-norm in this paper and PR where TT = I will denote 
the orthogonal projector I = TTT. 

2. Nonsingularity of M. In this section we will give necessary and sufficient 
conditions on A, B, CT and D for M to be nonsingular. These conditions are derived 
from a block factorization of M based on the singular value decomposition of A, and 
will later turn out to be useful in establishing the stability of our algorithm. We shall 
first introduce some notation and definitions. 

DEFINITION 2.1. The singular value decomposition (SVD) of A is denoted by 

A= U VT. 

Since A has at most ,u small singular values, we shall partition Y. as follows: 

(2.1) Y. O= 

where 

(2.2) ... ) 
and 

(2-3) A = ) 
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with a, * *-- i>81 - * * 0. We shall use 4) and T to denote that last , 
columns of V and U, i.e. 4) and T contain the right and left singular vectors correspond- 
ing to the ,u smallest singular values of A. The matrices U, and V will denote the 
first n - , columns of U and V, respectively. Thus, the SVD of A can be written as: 

(2.4) A ( U T) (T? ?) ( VT 

The following theorem gives conditions for the nonsingularity of M. 
THEOREM 2.1. Let the SVD of A be given by (2.4), where oJn-f. >0. Then, M is 

nonsingular if and only if the matrix 

E IA qTB 
E CT4?D CTVzS uTB 

is nonsingular. 
Proof. Based on (2.4), define the , + m by n - , matrix Q as: 

where 0 denotes ,t zero rows, and the n - , by , + m matrix H as: 

H = (OUT B). 

It can be easily verified that the matrix M can be factored as follows: 

(2.5) M=(o 2)LR(T 0) 

where 

(2.6) L =(In-IL 0) 

and 

(2.7) R=( j E)- 

The matrix L is clearly nonsingular, therefore it is easy to see that M is nonsingular 
if and only if R is nonsingular. Since Y., is diagonal with nonzero diagonal entries, 
R is nonsingular if and only if E is nonsingular. 0 

COROLLARY 2.1. (a) Assume that A is nonsingular and let the m by m matrix S be 
the Schur complement: 

(2.8) S- D- CTA-'B; 

then M is nonsingular if and only if S is nonsingular. 
(b) IfA issingularwith dim N(A) = ,u, i.e. A- 0 ando - $0, then Misnonsingular 

if and only if m>-,u and the matrix 

0 TTB 
(CT CTV UT) is D n onsingu, 

is nonsingular. 
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3. Deflated decomposition. Consider the system 

(3.1) Az = 

where the SVD of A is given by (2.4). If A is nonsingular, by applying the inverse of 
the expression (2.4), the solution z can always be represented as: 

(3.2) z = A- p = Zd + 4'-lTTp 

where 

(3.3) Zd VI, I UIp. 

We call (3.2) the deflated decomposition of z. When ,i is such that qn, >> 0, (3.2) 
can be interpreted as a decomposition of the solution into a deflated part, Zd, and a 
part spanned by approximate null vectors of A, since 1 contains the singular vectors 
corresponding to the ,u smallest singular values of A. When A is singular, Zd is still 
well defined and IIzdll remains bounded. We call Zd the deflated solution of (3.1). We 
will prove that Zd is the solution to a nearby singular but consistent system derived 
from (3.1). This new definition of Zd gives the basis for an algorithm to compute Zd 

that does not require explicitly computing the SVD of A. 
THEOREM 3.1. The deflated solution Zd of (3.1) is the unique solution to the following 

system: 

(3.4) PpAzd = PAp, PoZd = Zd. 

Proof Since U and V are orthogonal, it can be easily proved that 

(3.5) P =V TV, 

and 

(3.6) PIP= Uj . 

By substituting (3.3) into (3.4), we can prove that Zd is a solution to (3.4). On the other 
hand, if u is a solution to (3.4), we have 

U U,Au = U,UTp 

and by multiplying by V, El1 UT we get PJu = Zd. Since u = PDu, we have u = Zd, thus 
proving uniqueness. 0 

The following algorithm [6], [11] for computing Zd is based on Theorem 3.1. 

ALGORITHM DEFLATE. 
Step 1. Compute p = Pqp. 
Step 2. Solve Ad = p^. 
Step 3. Compute Zd = Ppd. 

Because of the deflation performed in Step 1, the size of the vector d computed 
in Step 2 is kept small and therefore Algorithm DEFLATE is stable even when A is 
nearly singular [4]. Step 3 is not essential. Its function is to purge Zd of any component 
in the 4 direction. Note that this algorithm only requires a solver for A and some of 
the singular vectors of A, but not the full SVD. Moreover, either direct or iterative 
methods such as multigrid [1] can be used. 

The following lemma will be needed later. 
LEMMA 3.1. Zd is also a solution to 

Azd = Ptp. 
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Proof. Follows from the definition (3.3) and (3.6). 0 

4. Deflated block-elimination. The Algorithm DBE was presented in [6] as a 
method for solving the system (1.1) when ,u = 1 and m = 1, i.e. B and C are vectors 
in R , D is a scalar, and the matrix A can be singular with nullity 1. The proposed 
method applies Algorithm BE combined with deflation techniques to find the deflated 
decomposition for the solution to the systems with the matrix A in (1.2) and it is made 
stable by avoiding the division by A. By replacing w and W by their deflated decomposi- 
tions 

1tTf 
W= Wd+ A , 

4'TB 
W=Wd+ 4A , 

in (1.3) and (1.4) we can derive that the solution to (1.1) is given by 

(4.1) (x) (wd) (-wd)+Q a, 

where 

(4.2) 8 = D-1[(C T)TTf-A(g- CTWd)] 

and 

(4.3) a = Dj1[(g - CTwd)PTB - (D - Wd)4 Tf] 

with 

(4.4) Dl-(CT4)TTB-A(D-CTWd). 

Note that -D1 is exactly the determinant of the matrix E in Theorem 2.1 and 
therefore is nonzero if M is nonsingular. The algorithm is proven stable in [6], where 
a backward error bound is derived. 

5. Generalizing deflated block elimination. In this section we consider the gen- 
eralization of Algorithm DBE to m - 1 and ,u ' 1. Let us first restrict our attention to 
the case ,u = 1. It might first appear the equations (4.1)-(4.4) generalize directly, with 
scalar divisions by D1 replaced by matrix inversion. However, the m by m matrix D1 
(4.4) tends to a rank-one matrix when A tends to being singular, i.e. as A tends to 
zero, and this would produce very inaccurate results if the inverse of that matrix were 
to be applied directly in (4.2) and (4.3). 

Since (4.4) is a rank-one modification of the matrix 

(5.1) Sd D-CTWd, 

if Sd is nonsingular, the Sherman-Morrison formula could be applied to express the 
inverse of D1 in terms of S-1 in (4.2) and (4.3), in the process cancelling out the 
singularity. Unfortunately, this method may fail because Sd could be singular. For 
example, let n = m = 2 and 

1 1 0 0] 

(5.2) M= 0 0 1 ii 
0 1 1 oj 

LO 01 0Ooi 
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then Y(M) 5 and 

{1 OX 
Sd( = 

which is clearly singular. 
Another alternative could be considered, which consists of applying Algorithm 

DBE in a recursive way as follows. Consider a new splitting of the matrix M: 

- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - l (5.3) M (5\. 15) 

where A is the matrix A augmented with the first column of B, the first row of C , 

and the (1,1)th element of D, i.e.: 

A ( A b" 

cT dlj 

If A is nonsingular, then Algorithm BE can be applied to solve the system Mz = b 
with the splitting (5.3). When a system with A needs to be solved in Algorithm BE, 
Algorithm DBE is applied. In this way we have reduced the problem to the case m = 1, 
solved in ? 3. However, this method fails if A is singular as the following example shows. 

Let n = m = 2 and 

-11 0 0 

(5.4) M= 0 00= 
[00 1 
O 1 1 1 

then X(M) = 5 and A is singular. Since 

I1 I 0\ 
A= O O O 

O 0 1 

is also singular, the recursive algorithm just described cannot be applied. 
We next derive a generalization to Algorithm DBE that works and is stable as 

long as M is nonsingular and well-conditioned. 
Analogous to (4.1), we look for solutions to (1.1) of the form: 

(5.5) (Y) (= )+( I ) W +Q() a, 
with a E RI' and I3 E R', and Wd and wd are the deflated solutions (3.3) to the systems 
AW = B and Aw =Jf By substituting (5.5) in (1.1), and using the relationships 

A(D = T,& 

AWd= PPB, Awd= Ppf 

(the last two from Lemma 3.1), it can be easily shown that (5.5) is a solution to (1.1) 
if the vectors a and ,3 solve the following system: 

(5.6) E( ) (g-C ?wd)' 
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where the m + ,u by m + ,u matrix E is given by 

(5.7) E (j D-C Wd)T 

From Theorem 2.1, E is nonsingular, and therefore (5.6) has a unique solution. Note 
that for the case m = A = 1, the solution (4.1) is of the form (5.5), where the 2 by 2 
system (5.6) has been solved directly giving (4.2) and (4.3). Note that in the case 
m + ,u > 2 some form of pivoting should be used when solving (5.6). The expressions 
(5.5) and (5.6) can also be derived from the factorization (2.5) of M, with the solution 
obtained by simple backsubstitution. In this process, the expressions for the deflated 
solutions wd and Wd corresponding to (3.3) naturally arise and can thus be computed 
by Algorithm DEFLATE, instead of using the SVD of A. This approach of deriving 
an algorithm for (1.1) through a factorization of M is similar in spirit to an algorithm 
derived in [8], [9], where an LU-factorization of M is derived from an LU-factorization 
of A with a small pivot [5]. Our approach can be viewed as a generalization of the 
algorithm in [8], [9], where instead of computing the LU-factorization of A, implicit 
deflation techniques are employed to fully exploit structures in A. For large and sparse 
problems, such as those arising from discretizations of partial differential equations, 
our approach should be more efficient. Moreover, it is more general because the deflated 
solutions can be computed by methods other than Gaussian elimination. 

We next show that E is well conditioned as long as M is well conditioned. Based 
on the factorization of M given in the proof of Theorem 2.1, an upper bound on the 
condition number of E can be derived in terms of the condition number of M. 

THEOREM 5.1. The condition number of E is bounded by 

X(E)'-<(M) (1 + 1). 

Proof Consider the expression (2.5). For any lower triangular matrix of the form 
(2.6), it is easy to prove that 

11 LIl ' 1 + 11 Qll 
and similarly, 

' 1+ IIQII. 
Therefore 

(5.8) X(L) '--(1 + 11 Qll) 2. '-1+ 1) 

Since 

|E|' |R|' |M| *|L-'I 

and 

11 E -l'II 1 iR -'II --<1M -'II .1 iL 

we have 

X(E)-' %(M) X(L) 

By applying (5.8) the proof is complete. 0 
The bound in Theorem 5.1 is independent of the size of I(AII and thus E is well 

conditioned if M is, regardless of whether A is nearly singular or not. Observe also that 
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there is a freedom in the choice of it, in the sense that, as long as a,_ >> 0, the algorithm 
is stable. The larger we choose ,u, the smaller the bound on 7X(E) will be, but on the 
other hand, it would require more work in computing the singular vectors t' and T. 

6. Error analysis and practical considerations. Here we present a backward error 
bound for the residual 

rM-M( -Qf. 

If the matrix M is well conditioned and rM is small, then the error in the solution is 
small. On the other hand, if M is ill conditioned, a small residual is all one can hope 
for. 

We shall use tildes to denote computed quantities. 
THEOREM 6.1. For any Wd, Wd, a, , A, E, a and a that satisfy 

(6.1) - , = R,, 
(6.2) AVd -PB = Rw, 
(6.3) A-Wd-P+f = rW 

and 

(6.4) E rE 2 

the solution x, y computed by (5.5) and (5.6) satisfies 

(6.5) rM= ( ) (f) = (rwRw1+ )+ (I 'r) 

This theorem shows that the stability and accuracy of this algorithm depend on 
keeping the residuals RA, Rw, rw and rE small and the solution a, f8 to (5.6) bounded. 
In the rest of this section we will look at each residual individually. 

In order to analyze RA, we have to look at algorithms for finding the singular 
vectors 1 and T. The following is a generalization of the inverse iteration algorithm 
presented in [4], [11] for higher dimension. At every iteration, the algorithm gives (, 
T and A such that RA is small. 

ALGORITHM SIT (Subspace Inverse Iteration). 
Given (F E RnXI such that (DT1 = I, repeat until convergence: 
1. Solve A] T = (. 
2. Compute the QR-factors T= QR. 
3. Set T=Q. 
4. Solve A1 = T. 
5. Compute the QR-factors D = QR. 
6. Set (D=Q, A=R-1. 

In general, when A is nearly singular, one or two iterations should be sufficient 
to get convergence. However, when A is not nearly singular or ,t > dim N(A), 
Algorithm SII may converge slowly. Since only a few iterations will be performed, (, 
T and A may not be computed accurately. Although the computed A may not necessarily 
be diagonal and the relationship ATP (DA may not hold, the computed (D and T are 
still orthogonal and 

(6.6) AF = TA, 

i.e. RA is small. 
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In ? 3 we presented Algorithm DEFLATE for computing the deflated solutions 
Wd and wd. In order to keep the residuals RW and rw small, Step 3 is not necessary. 
In fact, with that step, small residuals cannot be guaranteed if the singular vectors D, 
T and the matrix A of singular values are not accurate. As noted before, such situations 
can occur when SII terminates prematurely. On the other hand, it is clear that if Step 
3 in Algorithm DEFLATE is skipped, the residuals RW and r, will be small, even 
when (D, T and A are not accurate, as long as Wd and lid remain bounded. The 
computed deflated solutions will have some components in the directions of (D, but 
they will be bounded. For this reason, we recommend that Step 3 be skipped in 
Algorithm DEFLATE, which also saves a few inner products. 

Finally, let us look at rE. In exact arithmetic, Theorem 5.1 shows that E is well 
conditioned and therefore, the solution to the system (5.6) should remain bounded 
and the residual rE should be small. However, it was mentioned above that Algorithms 
SII and DEFLATE without the correction Step 3 might yield answers that keep the 
corresponding residuals small but at the cost of changing the entries of E in a nontrivial 
way. If the computed matrix F turns out to be well conditioned, then a- and 83 are 
bounded and rE is small. When T and (D are computed exactly and Algorithm 
DEFLATE without Step 3 is applied, the computed Wd will have a component in 
each direction of F that will be proportional to the ratio between the machine precision 
8M and the corresponding singular value, i.e. Wd satisfies 

(6.7) Wd=Wd +(U, 

where lIAu = O(SM). The computed E can thus be written as 

E=E( u+ o(EM) (0 I ) (M 

therefore, 

((E) =/ (E)(1 + IIuII)2. 
If 11A-111 c E71, then u is bounded and, by Theorem 5.1, E is well conditioned when 
M is well conditioned. 

We summarize our results, giving the outline for the algorithm and a rough estimate 
of work and storage. 

ALGORITHM GDBE (Generalized Deflated Block-Elimination). 
Step 1. Compute the n by A matrices of singular vectors (D and T and the A by 

,u matrix A of singular values, e.g. by two iterations of Algorithm SIT. 
Step 2. Compute the deflated solutions Wd and Wd as follows: 

-Compute PTB and TTf 

-Compute PRB=B -T(TTB) and Ptf=f -T(TTf). 
-Solve 

AWd= PPB 

and 

Awd= PPf 

Step 3. Form the m + ,u by m + ,u matrix 

E ( D CTBW) 
C CTO CTWX 
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Step 4. Solve the dense system 

(X) (g-CTWd) 

Step 5. Compute the solution: 

X = Wd Wdf +(Da, 

y = /. 

The algorithm requires the factorization of the matrix A, m + 1 solves for Wd and 
wd and 2, solves per inverse iteration for computing P and 1, plus lower order terms 
that include the solution to a dense m + ,u by m + ,u system and a few inner products. 
It is very efficient for multiple right-hand sides, since only backsolves with the factored 
matrices A and E are necessary. 

In addition to A, B, CT, D and the right-hand side, the algorithm requires 2n,u 
storage for T and P, plus O(m,u) extra storage for solving the E system. 

7. Numerical results. We performed some numerical tests with matrices of the form 

(7.1) A = (I -2uuT) Diag (n--1, .. *, 1, o)(I-2 VVT) 

where u and v are random vectors of norm 1 and cr = 10-' with i varying from 1 to 8. 
The matrices B, C and D are chosen randomly but such that M is well conditioned. 

lo-,~~~~~~~~~~~~~~~~~~ 

10-1 BE' 

I o , _ 

,~~~~~~~~ 

100 0 

,~~~~~~~~ ,~~~~~~~~ 

10-3 / ,, 

10F -- BE Ed 
L. I 

I. 105, 

~~~~ ,G~~~~~~~~~OBE 

10-? 

010 9 ' . I 

0 2 4 6 8 10 

FIG. 1. Relative Error in BE and GDBE. a-=10-i. 
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100 2 
/ 

101 ,' ,.\- ,' 

10o-2 / " ' / GDBE with 

io-3 step 3 of DEFLRT 

. . .~~~~~~~~~, 

lo-" - BE- 

i0-7 ===- ? GEon M 

108 

10X l 010 I . l l 
0 2 4 6 8 10 

FIG. 2. Relative Error in BE and GDBE. oa 10i. 

The computations were performed on a VAX-780, with a 27-bit mantissa. LINPACK 
routines were used to solve linear systems and compute the QR factorizations for the 
inverse iteration. Algorithm GDBE was tested and compared with Gaussian Elimination 
on the matrix M. Two iterations of Algorithm SII were used to estimate ID, T and A. 
It was also verified that, when Step 3 of Algorithm DEFLATE is included, inaccurate 
results can be obtained if the singular vectors are not computed accurately. 

In Fig. 1, the relative error in the solution is plotted versus i for the case m = 2 
and ,u = 1. While the Block-Elimination Algorithm gives an error that increases as the 
matrix A becomes more singular, Algorithm GDBE stays stable, giving an error that 
is comparable to applying regular Gaussian Elimination on the matrix M. 

In Fig. 2, the same example is considered. Here the dimension of the null space 
of A was overestimated to ,u = 2, so that 

(1 0) 

In this case, Algorithm SII does not converge to the exact singular vectors corresponding 
to the singular value 1. Nevertheless, Algorithm GDBE is still stable because the 
residual (6.1) remains small. This confirms that the estimation of the exact value of 
dim N(A) is not critical for the success of Algorithm GDBE, as long as , ? dim N(A). 
Finally, if Step 3 in Algorithm DEFLATE is not skipped, this makes (6.1) large, giving 
completely inaccurate results. 
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